HIWIN. MIKROSYSTEM

Direct Drive Motor

Technical Information

www.hiwinmikro.tw

HIWIN INDUSTRIE 4.0 Best Partner

Linear Motor Stage

- Semiconductor / Precision / Automated Transport /
- Automated Optical Inspection (AOI)
- Planar Servo Motor • Air Bearing Platform
- X-Y Stage
 Gantry Systems
- Single-Axis Linear Motor Stage

Linear Motor

Machine Tool / Semiconductor / Touch Panel / Laser Manufacturing Machine / Glass Cutting Machine • Iron Core Linear Motor--LMSA,

- LMSA-Z, LMFA, LMFC, LMFP Series
- Ironless Linear Motor--LMC Series
 Tubular Motor--LMT Series

Controller / Drive /

PCB / Display / Machine Tools /

Drive--E1, E2, D1, D2T Series

Semiconductor / Automated / Food /

Automated Optical Inspection (AOI)

E1 Series, FR Series, abi Series

AC Servo Motor

Controller--HIMC

AC Servo Motor--

Industry

Torque Motor & Direct Drive Motor

Machine Tools / Semiconductor / Lithium-ion Battery / Laser Marking / Wafer Dicing

• Torque Motor--TM-2 / IM-2, TMRW Series Display / Automation / Semiconductor / Lithium-ion Battery / Robot / Laser Marking / Automated Optical Inspection (AOI) Industry Direct Drive Motor--DMS, DMY, DMN, DMT Series

Linear Actuator /

Servo Actuator

Medical / Automation / Electric Servo Press / Barrier-free Equipment Industry Servo Actuator--LAA Series

 Linear Actuator--LAM, LAS, LAN. LAC Series

Semiconductor Subsystem

Semiconductor / LED / Panel

- EFEM (Equipment Front End Module)
- Wafer Robot
- Loadport
- Wafer Aligner

Multi-Axis Robot

Pick-and-Place / Assembly / Array and Packaging / Semiconductor / Electro-Optical Industry / Automotive Industry / Food Industry

- Articulated Robot SCARA Robot
- Electric Gripper

Torque Motor

Integrated Electric Gripper

Single-Axis Robot Precision / Semiconductor / Medical / FPD

- KK, SK • KS, KA
- KU, KE, KC

Automation / Semiconductor / Medical

Ballscrew

- Precision Ground / Rolled
- Super S Series
- Super T Series • Mini Roller
- Ecological & Economical
- Lubrication Module E2
- Rotating Nut (R1)
- Energy-Saving & Thermal-Controlling (Cool Type)
- Heavy Load Series (RD) Ball Spline

- **Position Measurement** System PCB / Woodworking / Automation / Warehouse Automation Programmable Industry

- Signal Translator High Performance Counter

.

- RCH Series
- Linear Guideway

• Ball Type--HG, EG, WE, MG, CG

Quiet Type--QH, QE, QW, QR
Other--RG, E2, PG, SE, RC

Configurator Chart

	External	Hollow shaft	Encoder	Spec	Dimensions							Peak torque(N	lm)															
Series	diameter (mm)	(mm)	type	page	page	0.96	1.92	4.2	8.4	9	12	18 24	30	40	45	60	75	90	120	141	150	180	225	282	300	450	Drive	Accessories
	110	35	Absolute	P.11	P.11						DMY44-B	 DMY48-В																
	170	45	Absolute	P.12	P.12							Д МУ63-В			DMY65-B		DMY68-B										E1	P.46
DWY	280	50	Absolute	P.13	P.13												DMYA3-B				DMYA5-B				DMYAA-B		-	
UMT	110		Incremental																									
	170	45	Incremental	P.14	P.14							DMY63-5			DMY65-5		DMY68-5										E1/D1	P.47/P.54
	280	60	Incremental	P.15	P.15												DMYA3-5				DMYA5-5				DMYAA-5		-	
	65	12	Absolute	P.22	P.19	DMN21-A	DMN22-A																					
	118	12	Absolute	P.22	P.20			DMN42-A	DMN44-A																	E1	P 46	
	160	35	Absolute	P.22	P.21						DMN71-B																	1.40
DMN	212	50	Absolute	P.22	P.21									DMN93-B														
	65	12	Incremental	P.26	P.23	DMN21-2	DMN22-2																					
	118	12	Incremental	P.26	P.24			DMN42-2	DMN44-2																		E1/D1 F	P.47/P.54
	160	35	Incremental	P.26	P.25						DMN71-4																	P.47/P.54
	212	50	Incremental	P.26	P.25									DMN93-5														

	Direct	Drive	Moto
--	--------	-------	------

Configurator Chart

C	External	Hollow shaft	Encoder	Spec	Dimensions							Pe	ak torque(Nm	n)														Duta	
Series	(mm)	(mm)	type	page	page	0.96	1.92	4.2	8.4	9	12	18	24	30	40	45	60	75	90	120	141	150	180	225	282	300	450	Drive	Accessories
	110	24	Incremental	P.29	P.29					DMS03-4		DMS07-4																	
DMC	150	35	Incremental	P.30	P.30							DMS12-5		DMS14-5		DMS16-5	DMS18-5											E1/D1	D (7/D E/
DMS	200	60	Incremental	P.31	P.31												DMS34-5			DMS38-5			DMS3C-5					- E1/D1 P.4//P	F.47/F.J4
	300	104	Incremental	P.32	P.32																	DMS74-6		DMS76-6			DMS7C-6		
DMT	290	140	Incremental	P.35	P.35									DMTB2-0														E1/D1	
	390	240	Incremental	P.35	P.35												DMTF2-1											בו/טו	-

HIWIN. MIKROSYSTEM

Direct Drive Motor - DM

Product Introduction and Application

0

-

0

HIWIN direct drive motors use direct drive design so reducers are not required. There is a highly rigid connection between the motor and load. Working with a servo drive, the motor can operate with outstanding acceleration and motion stability. HIWIN direct drive motors are especially suitable for tasks in automation because of the hollow shaft design. Cable systems and mechanical parts can be fed through without problems.

Applications

		Priority Perfor	Priority Performance Requirements									
Classification	Application	Accuracy	Speed	Rigidity	Compactness	Cleanliness	Maintenance Free					
Production	CVD, Wafer cleaning, ion Implantation	0			0	ο	ο					
equipment	Semi-conductor transport, Inspection/Processing	0			0	0	0					
	Assembly machines for electric components	ο	0		0	0	0					
Assembly machines	High-speed assembly machines for electronic components	ο	ο		o	ο	o					
	Various assembly machines	0	0		0	0	0					
	Machine part inspection	0			0		0					
	Inspection of electric components	0			0		0					
Inspection /	Inspection of optical components	0			0		0					
equipment	Chemical analysis of liquids		0			0	0					
	Various Inspection / testing equipment	ο			ο		o					
	Various assembly robots	0	0	0	0		0					
Robots	Various transport robots	0	0		0		0					
100013	Inpsection/Transport robots in clean rooms	0	0		0	0	0					

- No backlash
- Hollow shaft
- Maintenance free
- Compact and ultra-thin options available
- Brush-free drive
- Extremly rigid support with cross-roller brearing
- IP 65 available
- Integrated clamp is available as an option
- Hall sersor is available as an option

Contents

DM Series Features	08		DMT Sei	ries Direct Drive Motor	34	Ultra-thin and very large hollow shaft
DMY Series Direct Drive Motor	10	The best solution for industrial upgrade	DMTB Ser DMTF Ser DMT Serie	ies ies es T-N Curves	35 35 36	
DMY4 Series DMY6 Series DMYA Series DMY Series T-N Curves	11 12 13 5 14		Drives a E1 Drive D1 Drive	nd Accessories	38 ³⁹ 48	
DMN Series DMN Series DMN Series T-N Curves	18 19 20	Lower profile and space saving solution	Appendi	X	56	
DMS Series Direct Drive Motor	28	Suitable for all applications	A : Motor S B : Glossa C : Enviror D : Motor	nment	56 60 63 64	
DMS0 Series DMS1 Series DMS3 Series DMS7 Series DMS Series T-N Curves	29 30 31 32 33		E : Q&A		65	

The best solution to upgrade mechanical transmission to direct drive design

Outer rotating series **DMY** Series

- Outer rotating structure
- Integrated high resolution incremental/absolute feedback system
- High dynamic, torque and precision
- Maximum torque: 12 ~ 300Nm
- Compatiable with special environments

Application

Laser machining and general industrial machinery.

Large piece applications. Outer rotating structure allows optimization of inertia.

Outstanding motion profile.

Laser machining,

test and sorting

High speed acceleration

and deceleration rotation.

Semiconductor/ 3C electronics and laser application

Index position accuracy <2.5 arc-sec Axial runout < 5µm

Small part assembly and inspection.

Multi-motion indexing function. Suitable for highly efficient and intensive production.

A low-profile model suitable for high precision micro processing

Low center of gravity and low profile series

DMN Series

- Inner rotating structure
- Space saving design
- High resolution optical encoder
- Maximum torque: 0.96 ~ 39.6Nm

Application

Laser machining and 3C printing

3C electronics and curved surface inspection

Space saving design. A perfect solution for small loading angle adjustment.

3C electronics and coating

Increase productivity and reduce production cycle. Large movement with outstanding accuracy.

3C electronics and circuit printing

High-temperature endurance. Hollow shaft>140mm.

Semiconductor processing and laser application

High precision moving platform. Axial runout <5µm

Suitable for high speed moving and high precision application

Inner rotating series **DMS** Series

- Inner rotating structure
- High dynamic, torque and precision
- Maximum torque: 9.3 ~ 450Nm
- Meets IP65 enclosure standards as an option
- Integrated clamp is available as an option
- Hall sensor is available as an option

Application Laser machining and general industrial machinery.

Suitable for high precision semiconductor manufacturing process

Low center of gravity and ultra-thin series

DMT Series

- Ultra-thin structure
- High resolution encoder
- No reduction mechanism needed
- Zero backlash
- Extremely rigid support with HIWIN cross-roller bearings
- Excellent positioning accuracy
- Low speed ripple

Application

AOI inspection and semiconductor processing.

DMY Series

The DMY series is designed with an integrated, high resolution feedback system which is optimized to achieve high dynamic motion, high torque and high precision. The DMY series is a perfect fit for industries that require high precision.

- Outer rotating structure
- Integrated high resolution incremental/absolute feedback system

*Not suitable for environments with corrosive gas, cutting oils or metal powders.

- High dynamic, torque and precision
- Maxmum torque: 12 ~ 300Nm

DMY4 ABS Series Dimensions

DMY44-B0 125

4

Model Numbers for DMY Series

Motor Specification	Mechanical Specification
$\underline{DMY} \underline{6} 3 - \underline{B} \underline{0} \underline{S} \underline{N}$	$\underline{0}$ $\underline{0}$ - \underline{S} $\underline{0}$ - $\underline{1}$ \underline{S} \underline{S} - $\underline{0}$ - $\underline{0}$
Model	Reserved
Encoder B : 20bits(ABS) 5 : 3600 lines(INC)	Clamp 0:Without clamp [Standard]
Hall Sensor 0 : Without Hall sensor	Positioning Pinhole S : Standard
Winding Code S : Standard Temperature Sensor N : Without temperature sensor D : DTC	Connector Type S : ABS scale standard (AMP joint) A : Optical scale standard (Intercontec M17 metallic joint)
P : PTC sensor International Protection Standard 0 : IP40	Wire Length 0 : No cable (Optical scale standard) 1 : 0.3m (ABS scale standard)
Function Code	Accuracy Compensation 0 : Without compensation 1 : ±10 arc-sec 2 : ±5 arc-sec

-

S : 30µm/30µm(Standard) P : 5µm/30µm A : 5µm/15µm

Continuous current	I _C	Arms	2.6
Peak torque (Within 1s.)	Тр	Nm	12
Peak current (Within 1s.)	lp	Arms	7.8
Torque constant	Kt	Nm/Arms	1.56
Electrical time constant	Te	ms	5.2
Resistance (line to line at 25°C)	R25	Ω	2.57
Inductance (line to line)	L	mH	13.27
Number of poles	2p		14
Back emf constant (line to line)	Kv	V _{rms} /(rad/s)	0.9
Motor constant (line to line at 25°C)	Km	$\rm Nm/\sqrt{W}$	0.8
Thermal resistance	Rth	K/W	2.9
Temperature sensor			
Maximum DC bus voltage		VDC	
Inertia of rotor	J	kgm²	0.0065
Mass of motor	Mm	kg	5
Max. axial load	Fa	Ν	1000
Max. moment load	М	Nm	30
Max. speed		rpm	400
Resolution		p/rev	
Repeatability		arc-sec	
Accuracy		arc-sec	
Axial runout	Ra	mm	
Radial runout	Rr	mm	
Height	Н	mm	123

Symbol Unit

Tc

W

Nm

Note: ^{1]} ABS encoder only work with E1 drive

DMY4 ABS Series Specifications

Motor power Continuous torque

⁴⁾After error mapping *All the specifications in the table are in ±10% of tolerance except dimensions

	DMY48-B0
	251
	8
	2.6
	24
	7.8
	3.12
	5.4
	4.5
	24.42
	14
	1.8
	1.2
	1.6
Without tempe	rature sensor ³⁾
500(8	500 ²¹]
	0.0085
	7.5
	1000
	30
	400
20bit	(ABS)
±	5
±30/	±10 ⁴⁾
0.03(0	.005 ²¹]
0.03(0	.015 ^{2]})
	163

²¹Optional ³¹The motor can work with E1 drive, which provides overloading detection to prevent the motor from over-heating

DMY6 ABS Series Dimensions

DMY6 ABS Series Specifications

	Symbol	Unit	DMY63-B0	DMY65-B0	DMY68-B0				
Motor power		W	418	837	1005				
Continuous torque	Tc	Nm	8	16	24				
Continuous current	I _C	Arms	3.8	3.8	3.8				
Peak torque (Within 1s.)	Тр	Nm	24	48	72				
Peak current (Within 1s.)	lp	Arms	12	12	12				
Torque constant	Kt	Nm/Arms	2.13	4.26	6.39				
Electrical time constant	Te	ms	5.7	6.3	6.5				
Resistance (line to line at 25°C)	R25	Ω	2	3.1	4.38				
Inductance (line to line)	L	mH	11.4	19.4	28.26				
Number of poles	2p		16	16	16				
Back emf constant (line to line)	Kv	V _{rms} /(rad/s)	1.2	2.5	3.7				
Motor constant (line to line at 25°C)	Km	Nm/\sqrt{W}	1.2	2	2.5				
Thermal resistance	Rth	K/W	1.7	1.1	0.8				
Temperature sensor				Without temperature sensor ³					
Maximum DC bus voltage		VDC		500(600 ²⁾)					
Inertia of rotor	J	kgm ²	0.019	0.026	0.033				
Mass of motor	Mm	kg	7.7	10.7	14.7				
Max. axial load	Fa	Ν	3700	3700	3700				
Max. moment load	М	Nm	60	60	60				
Max. speed		rpm	500	500	400				
Resolution		p/rev		20bit (ABS)					
Repeatability		arc-sec		±5					
Accuracy		arc-sec	$\pm 25/\pm 10^{41}$						
Axial runout	Ra	mm		0.03(0.005 ²⁾)					
Radial runout	Rr	mm		0.03(0.015 ²⁾)					
Height	Н	mm	109.5	134.5	159.5				

Note: ¹⁾ ABS encoder only work with E1 drive

²¹Optional ³¹The motor can work with E1 drive, which provides overloading detection to prevent the motor from over-heating

⁴⁾After error mapping *All the specifications in the table are in ±10% of tolerance except dimensions

DMYA ABS Series Dimensions

DMYA ABS Series Specifications

BITTA ADD Series Spe	cincutic	/115	
	Symbol	Unit	DMYA3-B0
Motor power		W	523
Continuous torque	Tc	Nm	25
Continuous current	I _C	Arms	2.2
Peak torque (Within 1s.)	Тр	Nm	75
Peak current (Within 1s.)	lp	Arms	6.6
Torque constant	Kt	Nm/Arms	11.4
Electrical time constant	Te	ms	11.3
Resistance (line to line at 25°C)	R25	Ω	8.6
Inductance (line to line)	L	mH	97
Number of poles	2p		22
Back emf constant (line to line)	Kv	V _{rms} /(rad/s)	6.6
Motor constant (line to line at 25°C)	Km	Nm/\sqrt{W}	3.2
Thermal resistance	Rth	K/W	1.2
Temperature sensor			
Maximum DC bus voltage		V _{DC}	
Inertia of rotor	J	kgm²	0.254
Mass of motor	Mm	kg	45
Max. axial load	Fa	Ν	8000
Max. moment load	М	Nm	240
Max. speed		rpm	200
Resolution		p/rev	
Repeatability		arc-sec	
Accuracy		arc-sec	
Axial runout	Ra	mm	
Radial runout	Rr	mm	
Height	Н	mm	120
Height of base	НÞ	mm	

Note: ^{1]} ABS encoder only work with E1 drive

²¹Optional ³¹The motor can work with E1 drive, which provides overloading detection to prevent the motor from over-heating

⁴⁾After error mapping *All the specifications in the table are in ±10% of tolerance except dimensions

DMYA5-B0	DMYAA-B0
523	1047
50	100
2.2	4.4
150	300
6.6	13.2
22.5	22.5
12.8	13.3
13.3	5.8
170	77
22	22
13	13
5	7.6
0.8	0.4
Without temperature sensor ³⁾	
500(600 ²⁾)	
0.32	0.44
54	71
8000	8000
240	240
100	100
20bit (ABS)	
±5	
±25/±104	
0.03(0.005 ²⁾)	
0.03(0.015 ²⁾)	
145	200
31	

DMY6 INC Series Dimensions

4-M6x1.0Px12DP P.C.D 160 (Rotor fixture) Encoder connector Motor connector 2-Ø 6 H9x8DP PCD160

DMY6 INC Series Specifications

Symbol	Unit	DMY63-50	DMY65-50	DMY68-50			
	W	418	837	1005			
Tc	Nm	8	16	24			
Ι _C	Arms	3.8	3.8	3.8			
Тр	Nm	24	48	72			
lp	Arms	12	12	12			
Kt	Nm/Arms	2.13	4.26	6.39			
Te	ms	5.7	6.3	6.5			
R25	Ω	2	3.1	4.38			
L	mH	11.4	19.4	28.26			
2p		16	16	16			
Kv	V _{rms} /(rad/s)	1.2	2.5	3.7			
Km	Nm/\sqrt{W}	1.2	2	2.5			
Rth	K/W	1.7	1.1	0.8			
			PTC SNM100				
	VDC		500(600 ²⁾)				
J	kgm²	0.019	0.026	0.033			
Mm	kg	7.7	10.7	14.7			
Fa	Ν	3700	3700	3700			
М	Nm	60	60	60			
	rpm	500	500	400			
	p/rev		4,320,000(INC,sin/cos 1Vpp)				
	arc-sec		±2.5				
	arc-sec	$\pm 15/\pm 10^{3}/\pm 5^{3}$					
Ra	mm		0.03(0.005 ^{2]})				
Rr	mm		0.03(0.015 ²⁾)				
Н	mm	109.5	134.5	159.5			
	Symbol Ic Ic Tp Ip Kt Te Zp Kv Km Rth J Mm Fa M Ra Rr H	SymbolUnitWTcNmTcNmIcArmsTpNmIpArmsIpMm/ArmsTeSRtQTeNm/ArmsTeVrms/Irad/sRtVrms/Irad/sKyVrms/Irad/sKmK/WRthK/WRthNm/√WFaNJuKgn²JuNcFaNFaNMmkgFaNRthSingKmSingKaNmRammRthMinRthMinKaMin	Symbol Unit DMY63-50 W 418 Tc Nm 8 Ic Arms 3.8 Tp Nm 24 Ip Arms 12 Kt Nm/Arms 2.13 Te ms 5.7 R25 Q 2 L mH 11.4 2p 10 16 Kv Vrms/Irad/s) 1.2 Km Nm/ \sqrt{W} 1.2 Km Nm/ \sqrt{W} 1.2 Km K/W 1.2 Km K/W 1.2 Km K/W 1.2 Km K/W 1.2 Km Kor 1.2 Mm Kgm? 0.019 Mm S00 1.2 Mm Ko 3700 Ma S00 1.2 Ma S00 1.2 Ma Arc-sec 1.2	Symbol Unit DMY63-50 DMY65-50 W 418 837 Tc Nm 8 16 lc Arms 3.8 3.8 Tp Nm 24 48 lp Arms 12 12 Kt Nm/Arms 2.13 4.26 Te ms 5.7 6.3 R25 0 2 3.1 L mH 11.4 19.4 2p a 16 16 Kr Nm/ \sqrt{W} 1.2 2.5 Kr Nm/ \sqrt{W} 1.2 2.5 Kr Nm/ \sqrt{W} 1.2 2.5 Rin K/W 1.7 1.1 Voc TC SNM100 500(600 ²¹) J kgm ² 0.019 0.026 Mm kg 7.7 10.7 Fa N 3700 500 Mm 60 60 14			

Note:^{1]}INC encoder able work with E1 or D1 drive

²¹Optional ³¹After error mapping

*All the specifications in the table are in ±10% of tolerance except dimensions

DMYA INC Series Dimensions

DMYA INC Series Specifications

Symbol	Unit	DMYA3-50
	W	523
Tc	Nm	25
I _C	Arms	2.2
Тр	Nm	75
lp	Arms	6.6
Kt	Nm/Arms	11.4
Te	ms	11.3
R25	Ω	8.6
L	mH	97
2p		22
Kv	V _{rms} /(rad/s)	6.6
Km	Nm/\sqrt{W}	3.2
R _{th}	K/W	1.2
	VDC	
J	kgm ²	0.254
Mm	kg	45
Fa	Ν	8000
М	Nm	240
	rpm	200
	p/rev	
	arc-sec	
	arc-sec	
Ra	mm	
Rr	mm	
Н	mm	120
Hb	mm	
	Symbol Tc Ic Tp Ip Kt Te Ca 2p Kv Kw Kw Kw Km Ca 2p Kw Km Ca 2p Kw Kw Kw Ca 2p Kw Kw Ca 2p Kw Ca 2p Ca Ca 2p Ca 2p Ca 2p Ca 2p Ca 2p Ca 2p Ca 2p Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	SymbolUnitWTcNmIcArmsIcArmsTpMmIpArmsIpMm/ArmsTeMTeMTeMTeVrms/Irad/SKuVrms/Irad/SKyVrms/Irad/SKmK/WRuhK/WRuhNm/√WFaNinJuKgJuKgFaNMmarc-secRammRammHummHummHummHummHummHummHummHummHummHummHummHummHumm

Note:¹¹INC encoder able work with E1 or D1 drive

*All the specifications in the table are in ±10% of tolerance except dimensions

DMYA5-50	DMYAA-50
523	1047
50	100
2.2	4.4
150	300
6.6	13.2
22.5	22.5
12.8	13.3
13.3	5.8
170	77
22	22
13	13
5	7.6
0.8	0.4
PTC SNM100	
500(600 ²⁾)	
0.32	0.44
54	71
8000	8000
240	240
100	100
4,320,000(INC, sin/cos 1Vpp)	
±2.5	
±15/±10 ³ /±5 ³	
0.03(0.005 ²⁾)	
0.03(0.015 ²⁾)	
145	200
31	

²⁾Optional ³⁾After error mapping

DMY Series T-N Curves

(DC bus voltage=325VDc)

HIWIN. MIKROSYSTEM Direct Drive Motor 17

DMN ABS Series Dimensions

DMN Series

The DMN series is designed with a low profile and high resolution incremental or absolute ecoder optimized to achieve high dynamic motion, high torque and high precision. The DMN series is a perfect fit for industries that require high precision but less force.

- Space saving with low profile design
- High resolution incremental or absolute encoder
- Maximum torque: 0.96~39.6 Nm
- High dynamic, torque and precision

Model Numbers for DMN Series

Motor Specification													Mechanical Specification								
DMN	7	1	-	В	0	S	N	0	0	-	S	0	-	1	S	S	-	0	-	0	
Model																					Reserved code
A : 19 bits(AE B : 20 bits(AE 2 : 1500 lines	3S) 3S) 5(INC)																		0	: Wi	Clamp thout clamp (Standard)
4 : 2500 lines 5 : 3600 lines	(INC) (INC)																		Pos	itior	ing Pinhole
Hall Sensor 0 : Without h 1 : With digita	all sens al hall s	or ensor														S	ABS	lAcc scal	ording e stan	g to t Con darc	he drawing) nector Type I (AMP joint)
Winding Code S : Standard	9																(Inte	A : ercor	Optica ntec M	al sc 17 m	ale standard ietallic joint)
Temperature N : Without to P : PTC sens	Sensor empera or	ture se	nsor													0 : M 2 :	lo cat 1 : 0.5m	ole (C 0.3m)ptical n (ABS N21 IN	l sca sca Sca	Wire Length le standard) le standard) ncoder only)
International 0 : IP40	Protect	tion Sta	andard															Ac	curac	y Co	mpensation
Function Cod	e																	0:1	withou	1 : 2	mpensation ±10 arc-sec : ±5 arc-sec
																			Axia	ıl/Ra	dial Runout

Encoder connector Motor connector 2 - Ø 3 ^{+0.02} x6DP

*The product should avoid environment with corrosive gas, cutting oil and metal powder.

*This catalogue only demonstrates absolute encoders. As to incremental encoders, the resolution and connector

type may be different. Please consult your local distributor or HIWIN.

DMN21-A0

DMN22-A0

Encoder connector =88 Motor connector Rr A

> (300)

DMN44-A0

DMN71-B0

DMN93-B0

	Symbol	Unit	DMN21-A0	DMN22-A0	DMN42-A0	DMN44-A0	DMN71-B0	DMN93-B0
Motor power		W	50	100	102	205	232	691
Continuous torque	Tc	Nm	0.32	0.64	1.4	2.8	3.7	13.2
Continuous current	lc	Arms	1.9	1.9	1.5	1.5	3.4	3.4
Peak torque (Within 1s.)	Тр	Nm	0.96	1.92	4.2	8.4	11.1	39.6
Peak current (Within 1s.)	lp	Arms	5.7	5.7	4.5	4.5	10.2	10.2
Torque constant	Kt	Nm/A _{rms}	0.17	0.17	0.97	1.94	1.09	3.9
Electrical time constant	Te	ms	0.3	0.2	1.8	2.1	3.5	5.4
Resistance (line to line at 25°C)	R ₂₅	Ω	8.4	16.7	4.59	7.3	2.55	4.3
Inductance (line to line)	L	mH	2.55	4.1	8.18	15	9.02	23.2
Number of poles	2p		10	10	16	16	16	22
Back emf constant (line to line)	Kv	Vrms/(rad/s)	0.1	0.1	0.56	1.12	0.63	2.25
Motor constant (line to line at 25°C)	Km	Nm/\sqrt{W}	0.05	0.03	0.4	0.6	0.6	1.5
Thermal resistance	Rth	K/W	1.65	0.83	4.84	3.04	1.95	1.01
Temperature sensor					Without tempe	rature sensor ³⁾		
Maximum DC bus voltage		VDC			500(600 ²⁾)		
Inertia of rotor	J	kgm ²	0.000025	0.00003	0.0009	0.001	0.008	0.012
Mass of motor	Mm	kg	0.65	0.85	2	3	3.5	7.5
Max. axial load	Fa	Ν	100	100	600	600	1000	1000
Max. moment load	М	Nm	1.5	1.5	30	30	50	50
Max. speed		rpm	1500	1500	700	700	400	500
Resolution		p/rev	19bitABS	19bitABS	19bitABS	19bitABS	20bitABS	20bitABS
Repeatability		arc-sec		±	10		ł	±5
Accuracy		arc-sec		±	45		±30/	(±10 ¹⁾
Axial runout	Ra	mm			0.03(0	.005 ^{2]})		
Radial runout	Rr	mm			0.03(0	0.015 ^{2]})		
Size	WvI vH	mm	65x65x60	65x65x71 5	118x118x/5	118×118×65	160×160×50	212x212x55

DMN ABS Series Specifications

DMN22-20

Note:^{1]}After error mapping

^{2]}Optional

³⁾The motor can work with E1 drive, which provides overloading detection to prevent the motor from over-heating

*All the specifications in the table are in ±10% of tolerance except dimensions

*ABS encoder only work with E1 drive

	Symbol	Unit	DMN21-20	DMN22-20	DMN42-20	DMN44-20	DMN71-4□	DMN93-5
Motor power		W	50	100	102	205	232	691
Continuous torque	Tc	Nm	0.32	0.64	1.4	2.8	3.7	13.2
Continuous current	lc	Arms	1.9	1.9	1.5	1.5	3.4	3.4
Peak torque (Within 1s.)	Тр	Nm	0.96	1.92	4.2	8.4	11.1	39.6
Peak current (Within 1s.)	lp	Arms	5.7	5.7	4.5	4.5	10.2	10.2
Torque constant	Kt	Nm/A _{rms}	0.17	0.17	0.97	1.94	1.09	3.9
Electrical time constant	Te	ms	0.3	0.2	1.8	2.1	3.5	5.4
Resistance (line to line at 25°C)	R ₂₅	Ω	8.4	16.7	4.59	7.3	2.55	4.3
Inductance (line to line)	L	mH	2.55	4.1	8.18	15	9.02	23.2
Number of poles	2p		10	10	16	16	16	22
Back emf constant (line to line)	Kv	Vrms/(rad/s)	0.1	0.1	0.56	1.12	0.63	2.25
Motor constant (line to line at 25°C)	Km	Nm/\sqrt{W}	0.05	0.03	0.4	0.6	0.6	1.5
Thermal resistance	Rth	K/W	1.65	0.83	4.84	3.04	1.95	1.01
Temperature sensor					PTC S	NM100		
Maximum DC bus voltage		VDC			500(600 ^{2]})		
Inertia of rotor	J	kgm ²	0.000025	0.00003	0.0009	0.001	0.008	0.012
Mass of motor	Mm	kg	0.65	0.85	2	3	3.5	7.5
Max. axial load	Fa	Ν	100	100	600	600	1000	1000
Max. moment load	М	Nm	1.5	1.5	30	30	50	50
Max. speed		rpm	1500	1500	700	700	600	500
Resolution		p/rev			4,320,000 (INC	C,sin/cos 1Vpp)		
Repeatability		arc-sec			±ź	2.5		
Accuracy		arc-sec		±30/±1	$10^{1}/\pm 5^{1}$		$\pm 25/\pm 10^{10}/\pm 5^{10}$	$\pm 15/\pm 10^{11}/\pm 5^{11}$
Axial runout	Ra	mm			0.03(0).005 ^{2]})		
Radial runout	Rr	mm			0.03(0).015 ^{2]})		
Size	WxLxH	mm	65x65x60	65x65x71.5	118x118x45	118x118x65	160x160x50	212x212x55

DMN INC Series Specifications

Note:^{1]}After error mapping ^{2]}Optional

*All the specifications in the table are in ±10% of tolerance except dimensions

DMN Series T-N Curves

(DC bus voltage=325VDc)

DMS Series

The DMS series is designed with an integrated, high resolution feedback system optimized to achieve high dynamic motion, high torque and high precision. The DMS series is a perfect fit for industries that require high precision.

• Inner rotating structure

- Integrated incremental feedback system
- High dynamic, torque and precision
- Maximum torque:9.3~450Nm
- Meets IP65 enclosure standards as an option
- Integrated clamp is available as an option
- Hall sensor is availdable as an option

DMS0 INC Series Dimensions

Model Numbers for DMS Series

	Mechanical Specification																				
DMS	3	4	-	5	0	S	Ρ	0	0		S	0	-	0	Α	S	-	0) -	()
Model																					Reserved Code
Encoder 4 : 2500 line 5 : 3600 line 6 : 5400 line	s(INC) s(INC) s(INC)																		4 . 14	0:	Clamp Without clamp (Standard)
Hall Sensor 0 : Without H	Hall sen	sor																	1 : W 2 : W	ith po	ower-on clamp
Winding Cod S : Standard	e	5011501																(Ad	Po ccordir	ng to	S : Standard the drawing)
Temperature N : Without t	k emf Sensor empera	r iture se	nsor														(Inte	A erco	: Optic intec M	Co cal s 417 i	nnector Type cale standard metallic joint)
Internationa	l Protec	tion St	andard													0:	No ca	ıble	(Optica	al sc	Wire Length ale standard)
1 : IP40 1 : IP65	le																	0	Accura Witho	out c	ompensation
																				1	: ±10 arc-sec 2 : ±5 arc-sec
																		ς :	Ax 30um	ial/F	adial Runout

P : 5µm/30µm

A : 5um/15um

DMS0 INC Series Specifications

	Symbol	Unit	DMS03-40	DMS07-40					
Motor power		W	227	454					
Continuous torque	Tc	Nm	3.1	6.2					
Continuous current	I _C	Arms	2	2					
Peak torque (Within 1s.)	Тр	Nm	9.3	18.6					
Peak current (Within 1s.)	Ip	Arms	6	6					
Torque constant	Kt	Nm/Arms	1.55	3.1					
Electrical time constant	Te	ms	1.9	2.1					
Resistance (line to line at 25°C)	R25	Ω	7.1	11.1					
Inductance (line to line)	L	mH	13.8	23					
Number of poles	2p		10	10					
Back emf constant (line to line)	Kv	V _{rms} /(rad/s)	0.82	1.7					
Motor constant (line to line at 25°C)	Km	Nm/\sqrt{W}	0.5	0.8					
Thermal resistance	Rth	K/W	1.76	1.13					
Temperature sensor			PTC SI	NM100					
Maximum DC bus voltage		VDC	500(600 ²⁾)					
Inertia of rotor	J	kgm ²	0.003	0.006					
Mass of motor	Mm	kg	4	7					
Max. axial load	Fa	Ν	3700	3700					
Max. moment load	М	Nm	40	40					
Max. speed		rpm	700	700					
Resolution		p/rev	4,320,000 (INC	C,sin/cos 1Vpp)					
Repeatability		arc-sec	±2	2.5					
Accuracy		arc-sec	±15/±1	0 ^{1]} /±5 ^{1]}					
Axial runout	Ra	mm	0.03(0	.005 ^{2]})					
Radial runout	Rr	mm	0.03(0	.015 ^{2]})					
Height	Н	mm	117.5	150					

Note:^{1]}After error mapping ^{2]}Optional

*All the specifications in the table are in ±10% of tolerance except dimensions

 $^{*}\mbox{The IP65}$ option is for environments with cutting oil and metal powder.

*The DMS product offer external clamp option. Please consult your local distributor or HIWIN.

DMS1 INC Series Dimensions

DMS1 INC Series Specifications

•						
	Symbol	Unit	DMS12-5	DMS14-5	DMS16-5	DMS18-5
Motor power		W	314	628	942	1047
Continuous torque	Tc	Nm	5	10	15	20
Continuous current	Ic	Arms	4	4	4	4
Peak torque (Within 1s.)	Тр	Nm	15	30	45	60
Peak current (Within 1s.)	lp	Arms	12	12	12	12
Torque constant	Kt	Nm/Arms	1.25	2.5	3.75	5
Electrical time constant	Te	ms	3.2	3.6	3.8	4
Resistance (line to line at 25°C)	R25	Ω	2.6	3.9	5.2	6.5
Inductance (line to line)	L	mH	8.2	14	20	26
Number of poles	2p		22	22	22	22
Back emf constant (line to line)	Kv	V _{rms} /(rad/s)	0.6	1.2	1.8	2.4
Motor constant (line to line at 25°C)	Km	Nm/\sqrt{W}	0.6	1	1.3	1.6
Thermal resistance	Rth	K/W	1.2	0.8	0.6	0.48
Temperature sensor				PTC S	NM100	
Maximum DC bus voltage		VDC		500(600 ²⁾]	
Inertia of rotor	J	kgm ²	0.006	0.0065	0.007	0.0075
Mass of motor	Mm	kg	5.7	7	8.3	9.5
Max. axial load	Fa	Ν	3700	3700	3700	3700
Max. moment load	М	Nm	60	60	60	60
Max. speed		rpm	600	600	600	500
Resolution		p/rev		4,320,000 (INC	c,sin/cos 1Vpp)	
Repeatability		arc-sec		±ź	2.5	
Accuracy		arc-sec		±15/±1	0 ^{1]} /±5 ^{1]}	
Axial runout	Ra	mm		0.03(0	1.005 ^{2]}]	
Radial runout	Rr	mm		0.03(0	1.015 ²⁾]	
Height	Н	mm	100	120	140	160

Note:¹⁾After error mapping ^{2]}Optional

*All the specifications in the table are in $\pm 10\%$ of tolerance except dimensions

DMS3 INC Series Dimensions

DMS3 INC Series Specifications

DH33 INC Series Spe	CIIICatio	115						
	Symbol	Unit	DMS34-5	DMS34-5	DMS38-5	DMS38-5	DMS3C-5	DMS3C-5
Motor power		W	837	1256	837	1884	753	1884
Continuous torque	Tc	Nm	20	20	40	40	60	60
Continuous current	I _C	Arms	3	6	3	6	3	6
Peak torque (Within 1s.)	Тр	Nm	60	60	120	120	180	180
Peak current (Within 1s.)	Ip	Arms	9	18	9	18	9	18
Torque constant	Kt	Nm/Arms	6.6	3.3	13.3	6.65	20	10
Electrical time constant	Te	ms	4.8	4.4	5.3	4.5	5.1	5
Resistance (line to line at 25°C)	R25	Ω	8.4	1.7	13.6	2.9	18.8	3.9
Inductance (line to line)	L	mH	40	7.5	71.5	13	95	19.5
Number of poles	2p		22	22	22	22	22	22
Back emf constant (line to line)	Kv	V _{rms} /(rad/s)	3.2	1.6	6.4	3.2	9.6	4.8
Motor constant (line to line at 25°C)	Km	Nm/\sqrt{W}	1.9	2.1	2.9	3.2	3.8	4.1
Thermal resistance	Rth	K/W	0.66	0.82	0.41	0.48	0.3	0.36
Temperature sensor					PTC S	NM100		
Maximum DC bus voltage		VDC			500(600 ^{2]}]		
Inertia of rotor	J	kgm ²	0.02	0.02	0.026	0.026	0.035	0.035
Mass of motor	Mm	kg	17	17	22.5	22.5	28.5	28.5
Max. axial load	Fa	Ν	8000	8000	8000	8000	8000	8000
Max. moment load	М	Nm	240	240	240	240	240	240
Max. speed		rpm	400	600	200	450	120	300
Resolution		p/rev			4,320,000 (INC	C,sin/cos 1Vpp)		
Repeatability		arc-sec			±ź	2.5		
Accuracy		arc-sec			±15/±1	$10^{1}/\pm 5^{1}$		
Axial runout	Ra	mm			0.03(0).005 ²⁾)		
Radial runout	Rr	mm			0.03(0).015 ²⁾]		
Height	Н	mm	150	150	190	190	230	230

Note:^{1]}After error mapping ^{2]}Optional

*All the specifications in the table are in $\pm 10\%$ of tolerance except dimensions

DMS7 INC Series Dimensions

ţΧ

View X

DMS Series T-N Curves

DMS7 INC Series Specifications

	Symbol	Unit	DMS74-6	DMS74-6□L	DMS76-6	DMS76-6□L	DMS7C-6	DMS7C-6□L
Motor power		W	628	1308	565	1334	376	1256
Continuous torque	Tc	Nm	50	50	75	75	150	150
Continuous current	I _C	Arms	3	6	3	6	3	6
Peak torque (Within 1s.)	Тр	Nm	150	150	225	225	450	450
Peak current (Within 1s.)	lp	Arms	9	18	9	18	9	18
Torque constant	Kt	Nm/Arms	16.7	8.35	25	12.5	50	25
Electrical time constant	Te	ms	4.6	5	5.1	5	5.4	6
Resistance (line to line at 25°C)	R25	Ω	14	3.5	19	4.8	32.5	8.5
Inductance (line to line)	L	mH	64	17.5	96.5	27	176	50.6
Number of poles	2p		44	44	44	44	44	44
Back emf constant (line to line)	Kv	V _{rms} /(rad/s)	10.8	5.4	16.2	8.1	32.4	16.2
Motor constant (line to line at 25°C)	Km	Nm/\sqrt{W}	3.6	3.6	4.7	4.7	7.2	7.0
Thermal resistance	Rth	K/W	0.4	0.4	0.29	0.29	0.17	0.16
Temperature sensor					PTC S	NM100		
Maximum DC bus voltage		VDC			500(600 ^{2]}]		
Inertia of rotor	J	kgm ²	0.152	0.152	0.174	0.174	0.241	0.241
Mass of motor	Mm	kg	36	36	41	41	57	57
Max. axial load	Fa	Ν	8000	8000	8000	8000	8000	8000
Max. moment load	М	Nm	360	360	360	360	360	360
Max. speed		rpm	120	250	72	170	24	80
Resolution		p/rev			4,320,000 (INC	C,sin/cos 1Vpp)		
Repeatability		arc-sec			±ź	2.5		
Accuracy		arc-sec			±15/±1	$10^{1}/\pm5^{1}$		
Axial runout	Ra	mm			0.03(0).005 ^{2]})		
Radial runout	Rr	mm			0.03(0).015 ²⁾)		
Height	Н	mm	160	160	180	180	240	240

Note:¹⁾After error mapping ^{2]}Optional

*All the specifications in the table are in $\pm 10\%$ of tolerance except dimensions

DMT Series

DMT series is one of the lowest profile direct drive motors in the market. The compact design significantly decreases the height of the machine. Cables and air tubes can go through the large hollow shaft easily. With high resolution encoder and superior dynamic features, DMT series is suitable for applications of various product inspection and processing.

- Extra large hollow center
- Excellent positioning accuracy. Low speed ripple
- No reduction mechanism needed. Zero backlash
- Highly rigid design

DMT INC Series Dimensions

DMT INC Series Specifications

Bill into Series Speer	incution.			
	Symbol	Unit	DMTB2-0	DMTF2-1
Motor power		W	334	438
Continuous torque	Tc	Nm	9.1	19
Continuous current	I _C	Arms	2.6	2.6
Peak torque (Within 1s.)	Тр	Nm	30.4	63.6
Peak current (Within 1s.)	lp	Arms	8.7	8.7
Torque constant	Kt	Nm/Arms	3.5	7.3
Electrical time constant	Te	ms	0.7	0.7
Resistance (line to line at 25°C)	R25	Ω	11.7	17.2
Inductance (line to line)	L	mH	8.6	12.3
Number of poles	2p		32	48
Back emf constant (line to line)	Kv	V _{rms} /(rad/s)	2	4.2
Motor constant (line to line at 25°C)	Km	$\rm Nm/\sqrt{W}$	0.8	1.4
Thermal resistance	R _{th}	K/W	0.63	0.43
Temperature sensor			PTC SI	NM100
Maximum DC bus voltage		VDC	500(0	600 ²¹]
Inertia of rotor	J	kgm ²	0.04	0.13
Mass of motor	Mm	kg	6.5	9.3
Max. axial load	Fa	Ν	500	750
Max. moment load	М	Nm	50	75
Max. speed		rpm	350	220
Resolution		p/rev	3,686,400	4,319,232
Repeatability		arc-sec	±2	±1.5
Accuracy		arc-sec	$\pm 20/\pm 10^{11}/\pm 5^{11}$	$\pm 15/\pm 10^{1}/\pm 5^{11}$
Axial runout	Ra	mm	0.03	0.03
Radial runout	Rr	mm	0.03	0.03
Height	Н	mm	22	22

Note:¹⁾After error mapping ^{2]}Optional

*All the specifications in the table are in $\pm 10\%$ of tolerance except dimensions

Model Numbers for DMT Series

			Moto	r Spe	cificat			Mechanical Specification												
DMT	В	2	-	0	0	S	Р	0	0	-	S	0	-	3	G	S	-	0	-	0
Model																				Reserve
Encoder 0 : 900 lines 1 : 1216 lines																			0	Clan • Without clan (Standar
Hall Sensor 0 : Without ha	ll sens	or																(Acc	Posi	tioning Pinho S : Standa g to the drawin
S : Standard	Sensor																+ F	G	ire(Mo	Connector Ty JB 15P(Encode tor power cab
N : Without te P : PTC senso	mpera r	ture se	nsor															100 10	110(1110	Wire Leng
International F 0 : IP40	Protect	tion Sta	andard														3	: 3m(l	DMT s	eries standar
Function Code																		Acc 0 : W	uracy: /ithou	r Compensation t compensation 1 : ±10 arc-s 2 : ±5 arc-s
																		C . O	Axial	/Radial Runo

 $\begin{array}{c} S \, : \, 30 \mu m / 30 \mu m (Standard) \\ P \, : \, 5 \mu m / 30 \mu m \end{array}$

DMT Series T-N Curves

Drive

Combinations to work with servo drive

		E1 servo drive	D1 servo drive
		Communicat	ion interface
Drive		EtherCAT®	EtherCAT ®
		mega-ulink	mega-ulink
		MECHATRONLINK III	-
DM series		Мо	del
	DMS03	ED10-04	D1-36-S2
	DMS07	ED10-04	D1-36-S2
	DMS12	ED10-00-10	D1-36-S2
	DMS14	ED10-00-10	D1-36-S2
	DMS16	ED10-00-10	D1-36-S2
	DMS18	ED10-00-10	D1-36-S2
	DMS34	ED10-00-10	D1-36-S2
	DMS34-5	ED10-00-20	D1-36-S2
DMC corios	DSM38	ED10-00-10	D1-36-S2
DMS series	DMS38-5	ED10-00-20	D1-36-S2
	DMS3C	ED10-00-10	D1-36-S2
	DMS3C-5	ED10-00-20	D1-36-S2
	DMS74	ED10-00-10	D1-36-S2
	DMS74-6	ED10-00-20	D1-36-S2
	DMS76	ED10-00-10	D1-36-S2
	DMS76-6	ED10-00-20	D1-36-S2
	DMS7C	ED10-00-10	D1-36-S2
	DMS7C-6	ED10-00-20	D1-36-S2
	DMY44	ED10-04	-
	DMY48	ED10-04	-
	DMY63	ED10-00-10	D1-36-S2
	DMY65	ED10-00-10	D1-36-S2
DMT SELIES	DMY68	ED10-00-10	D1-36-S2
	DMYA3	ED10-04	D1-36-S2
	DMYA5	ED10-04	D1-36-S2
	DMYAA	ED10-00-10	D1-36-S2
	DMN21	ED10-04	D1-36-S2
	DMN22	ED10-04	D1-36-S2
DMN	DMN42	ED10-04	D1-36-S2
DMN series	DMN44	ED10-04	D1-36-S2
	DMN71	ED1	D1-36-S2
	DMN93	ED10-00-10	D1-36-S2
DMT :	DMTB2	ED10-04	D1-36-S2
DMT series	DMTF2	ED10-04	D1-36-S2

*D1 series can only work with incremental encoder direct drive motor. *E1 series can work with absolute/ incremental encoder direct drive motor. ESC (Excellent Smart Cube) is requested for incremental encoders.

E1 Drive

- 3.2 kHz speed response
- Tuneless function
- 0 Advanced auto tuning
- Ripple compensation 0
- Unique gantry control function
- 0 Network with industrial communication devices
- 0 Supports various motor types
- 0 Built-in STO function
- 0 Supports various types of encoders, such as Digital, Analog, Tamagawa, EnDat and Biss-C

3 Advanced Auto Tuning

This function supports automatic loop gains, tuning and filters adjustment to suppress mechanical vibration and resonance, which optimizes machine performance.

With auto tuning Position commands	Without auto tuning
	Time domain response - Inertia ratio = 30:1 - Mechanical vibration = 12 Hz - Mechanical resonance = 80 Hz

5 **Unique Multi-motion Function**

Applications, such as Indexing, multi-motion and absolute motion, can be realized easily with E1 multi-motion function.

2 3.2kHz Speed Response

Higher speed reponse, faster settling and higher throughput.

4 **Ripple Compensation**

Effectively suppresses the speed ripple caused by motor cogging. This function is especially useful for mechanism in

Compatible Encoder Types 6

Built-in interface to receive digital encoder signals. Tamagawa serial encoder interface is also supported. With an ESC(Excellent Smart Cube), E1 can support other types of encoders, such as analog (SIN/COS), EnDat® and BiSS®-C.

Note(*): Supported in ESC-SS

E1 Model Explanation ED1 S - V G - 0 4 2 2 - 0 1 - 0 0 Туре S : Standard F : Fieldbus Control Interface V : Voltage command and Pulse E : EtherCAT* H:mega-ulink

Special Function

P : PROFINET*

Rated Output

L : MECHATROLINK-III*1

G : Gantry N : Without special function

04 : 400W 10 : 1kW

20 : 2kW 40 : 4kW

ESC - S S - S 0 1

Туре AN : SIN/COS SS : SIN/ COS, A/B, BiSS-C*2, EnDat*2 Note1 : AN type only support S01. Note2 : SS type please refer to E1 manual for details.

Reserved S01 : Full Function Type S02 : General Type

E1 Wiring Diagrams

which high control gains are not allowed. 1.06

0.94

AC Phase

2 : Single/Three phase(400W or 1kW Drive) 3 : Three phase(2kW or above Drive)

Note

EtherCAT® is a registered trademark of Beckhoff Automation Co., 1 td. MECHATROLINK is a registered trademark of MECHATROLINK Members Association PROFINET® is a registered trademark of PROFIBUS & PROFINET International (PI).

EnDat[®] is a registered trademark of HEIDENHAIN GmbH. BiSS[®] is a registered trademark of iC-Haus GmbH.

Unit: mm

e	(ESC)

!	Specification				
	+5.0 V ±5%				
	650mA				
Increme	ntal Sign		Absolute Type	9	
COS / rence	A / B / Index	BiSS-C	Tamagawa	EnDat 2.1 / 2.2	
1Hz factor : 4096 nes)	4MHz	5MHz		4MHz	
-	-	32	bit	64 bit	
Differentia	al (RS422)	Differential (RS485)			
	PTC				
	$0^{\circ}C \sim + 45^{\circ}C$				
	-20°C ~ + 65°C				
	IP20				

E1 Servo Drive System Support Tools

1 Auto-Tuning

1. Gain:velocity loop gain, position loop gain and moment of inertia ratio.

2. Filter:torque command filter and notch filter.

Multi-indexing function

2 Analyze Function

Ann X			
ale transfer dia dia			
and the second stand			
1 - Position error	2.0210795/ deg		
A Abarrell, W. Lot N.			
Minard W.M. Han			
2 . Feedback position	23.44/4 dog		
a batal di anta			
Look in the same			
Televine II asti			
10 - Command current	0.095738 A amp		
in the second			
listerist ill och			
TANA I A MUN			
11 - Motor corrot	0.499265 A comp		

ditec	Fr. 15,000	Step-OCBL DCBL Convert Plant Plant Convert			
Cirial delete	Signal offs 0 Signal X_rel_pos_ext brack X_rel_pos_ext	Load			
Neto all	Output X_vol_fb	Pan Bond	Sut default frog range		
imo	Gainette				
time L1					
rable l				. ~	
- atta	10	100		1990	10000
	Pirase(reg)			/	
the initialized				1	1
ice initialized mode mol(0.1%) ;	100				
icsee into installizael I mode ingl(0.1%) : 15.1485	520 20 2			\sim	X
iciee ina intulizad I mode ingl(0.1%) 5.1485	32 22 9 			\sim	

Scope

1. Scope can support up to 8 channels at the same time.

2. User-defined time length. Easy to check the

results of before and after adjustments.

- 3. Monitor up to 21 physical quantities.
- 4. Monitor 38 servo signal status.

Spectrum analyzer

- 1. Quick inertia ration measurement.
- 2. Identify mechanical resonance point.

Up to 64 selections!

Easy programming with a drop-down list

Multi-station setting	all as the	_		-			- 0	
		5	- 1 - 1					
Task#5	工位種類		位置 (ctrl unit)	速度 (rpm)			站位數量	
Task#1	ILA.		0	0	NLA.	-	0	
Task#2	NA				N.A.	-	0	
Task#3	送到移動 相對移動				N.A.		0	
Task#4	日本語作				N.A.		0	
Task#5	お原語 分度運動1・復位方	式:下一	酉站位。		N.A.	-	0	
Task#6	分度運動2・復位方	式:最近的	的站位。		N.A.		0	
Task#7	8.A.		0	0	N.A.	-	0	
Task#8	N.A.		0	0	N.A.	-	0	
Task/9	A.F		0	0	N.A.		0	
Task#10	N.A.		0	0	N.A.	_	0	
Task#11	H.A.		0	0	N.A.	-	0	
Task#12	ILA.		0	0	N.A.		0	
Task#13	ILA.		0	0	ILA.	-	0	
Task#14	N.A.		0	0	ILA,	_	0	
Task#15	ILA.		0	0	ILA.		0	
Task#15	ILA,		0	0	N.A.	-	0	
Task#17	N.A.		0	0	N.A.	_	0	
Task#18	N.A.		0	0	N.A.		0	
Task#19	N.A.		0	0	N.A.		0	_
Task#20	ILA.		0	0	N.A.		0	
Task#21	N.A.		0	0	N.A.		0	

3 Status Monitor

Internal status

- 1. Bus voltage
- Serial encoder
 AqB encoder
- 4. Encoder 5V
- 5. Motor current
- 6. U, V, W-current

I/O signal status

1. Pulse input 2. AqB output 3. V-REF 4. T-REF 5. Digital input signal (I

7. A01, A02

4 Convenient and Useful

- 1. Absolute Movement
- 2. Relative Movement
- 3. JOG
- 4. Homing
- 5. Indexing movement-1 (Reset method: next motion)
- 6. Indexing movement-2 (Reset method: nearest motion)

5 Rich Combinations to Choose

- 1. 1~64 selections
- 2. Binary options
- 3. Save the number of controller I/O

6 Easy Operation

- 1. Free from complicated programming
- 2. User Experience design
- 3. Foolproof design

E1 Drive Specification

	Rated Output		400W	1kW	2kW	4kW	
	Single Phase Main	Rated Voltage (Line to Line)	AC 100 ~ 120 Vrms , 50~60 Hz AC 200 ~ 240 Vrms , 50~60 Hz			-	
	Power	Rated Current (Arms)	2.9	6.5	-	-	
Input Power Three Phase Ma Power		Rated Voltage (Line to Line)		AC 200 ~ 240 V	rms , 50~60 Hz	<u> </u>	
	1 Ower	Rated Current (Arms)	1.46	3.3	11.3	17.0	
		0.1.15	1 Ø/AC 100 ~ 120	Vrms , 50~60 Hz		-	
		Control Power		1 Ø/AC 200 ~240	Vrms , 50~60 Hz		
		Phase Voltage		3 Ø/AC 240) Vrms max.		
Output	Ma	x Rated Power (W)	400	1k	2k	4k	
Power	Pe	ak Current (Arms)	10	23.3	42	75	
	Ra	ted Current (Arms)	2.5	5.6	12	25	
		Cooling Method		Fan	cooling		
	Control Method			IGBT PWM space	e vector control		
	PWM	Modulation Frequency	16 k	(Hz	81	кНz	
		Applicable Motor	AC/DM/LM				
	S	TAT LED Indicator	Blinking red: Error/Blinking green: Ready				
	CH	ARGE LED Indicator	Red: The main power is supplied./No light: The main power is not supplied.				
	Dynamic Brake		Built-in dynamic brake circuit/Delay time of relay: 20 ms				
	Built-in R	esistor for Dynamic Brake	-	- 10 0hm / 10 W 27 0hm /			
		Analog Output	Channel: 2/Resolution: 12 bit/Output voltage range: ±10 V/Accuracy: ±2%/ Maximum output current: ± 10 mA				
		Command Source		Pulse comman	d from controller		
		Signal Type		Pulse / Direction	n, CW / CCW, AqB		
	Position	Isolated Circuit		High-speed o	optical coupler		
	Mode	Input Signal		Differential input o	r single-ended input		
		Maximum Input Bandwidth		Differential: 5 Mpps /	Single-ended: 200 kpps		
		Electronic Gear		Gear ratio: P Pulses: 1~1 Counts: 1~1	ulses / Counts ,073,741,824 ,073,741,824		
		Command Source		DC voltage comn	nand from controller		
Control		Impedance		14	k0hm		
Function	Velocity	Signal Format		±1	0 Vdc		
	Mode	Maximum Input Bandwidth		1	DO Hz		
		Specification		16 bit A/D ir	nput (V-REF+/-)		
		Command Source		DC voltage comn	nand from controller		
		Impedance		14	k0hm		
	Torque	Signal Format		±1	0 Vdc		
	Mode	Maximum Input Bandwidth		1	DO Hz		
		Specification	16 bit A/D input (T-REF+/-)				

	Rated Ou	tput		400W
	С	ontrol M	lode	
	P	ower Su	pply	
	Signal	S	ierial Signal	
Encoder	Format	Incr	emental Signal	
Lincoder	Sa	afety Fur	octions	Encoder pov
	Positi	on Count	ting Range	
	Maximum Dif	ferentia	l Input Bandwidth	
	Linear Mo	otor/Dire	ct Drive Motor	Deper
Encoder Feedback	Emulated Encoder Output (Fieldbus servo drive does not support)		Z Phase	 Serial encod output signal ca Z-phase oper Only output: (b.) Outputs one
recuback			A/B Phase	 Serial encod maximum outp instance, ten er
Computer Communication	Standard USB2.0 (Mini USB type)			Connect the s
	Input			The function E1 series ser only pro
General- purpose I/O		The functio E1 series		
	Posi	Outputs are d		
Decembra	Regenerative Resistor			400 W : Without built-in 1 kW/2 kW/4 kV With built-in re regenerative ca
Energy	Built-in	Regener	ative Resistor	-
Protection	Protection of R	egenerati	ve Resistor Enabled	
	Protection of R	egenerati	ve Resistor Disabled	
	Overv	oltage P	rotection	
	Opt	tional Fu	inction	
	Opera	ating Ter	nperature	
	Stor	age Tem	perature	
Environment		Humid	lity	Ор
		Altitu	de	Loos there Of
		ID Dati	ng	Less than U.

	1kW	2kW	4kW
	Positio Velocit Torque Full-closed loop mo	n mode y mode e mode de (Dual loop mode)	
	+5 1 Vdc+59	% 700 mΔ	
Resol	ution: 23 bit (Single-turn, Bandwidt	/multi-turn absolute enc h: 5 MHz	oder)
AqB The	and Z-phase signals (Di maximum input bandwi	gital differential TTL sigr dth of each phase is 5 MI	ial) Hz
wer mal	function detection/Short	circuit protection/Under	voltage protection
	-2.147.483.648~2.1	47.483.647 (32 bit)	
	Internal quadruple free	quency 20 M counts/s	
nding oi	n encoder type, Excellent	Smart Cube (ESC) may	be required.
der and an be ao n collec s one Z e Z-pha	incremental encoder (/ djusted by parameter. 3. tor output is supported. 1 -phase signal for total tra se signal per one revolut	AqB > sin/cos) are suppo Digital differential signal 5. Two output methods c avel distance. ion.	rted. 2. The width of output an be selected.
ler and out band ncoder (digital encoder (AqB) ar dwidth is 18 Mcount/s. 3 counts = one emulated e	e supported. 2. Different 3. The scaling of output ncoder count.	iial signal output. The can be adjusted. For
servo dr	ive with your computer t and operate man	o set parameters, monito ually via Thunder.	or physical quantities
ns of ge vo drive ovides e	neral-purpose inputs (O provides ten general-pu ight general-purpose inp	ptical couplers) can be de irpose inputs (I1 to I10). F outs (I1 to I8) 24 V/5 mA (F	efined by the user. Fieldbus servo drive Each input pin)
ons of g s servo	eneral-purpose outputs drive provides five gener (Each ou	(Optical couplers) can be al-purpose outputs (O1 t tput pin)	defined by users. o O5) 24 V/0.1 A
different	ial signals. The timing fo be set with p	r the outputs and conditi arameters.	on to trigger should
n regene W : regenera apacity.	erative resistor Connect	to external regenerative	resistor if needed.
	40 Ohm / 40 W	12 Ohm / 60 W	13 Ohm / 120 W
	+HV>	370 Vdc	
	+HV <	360 Vdc	
	390	Vdc	
	Gantry synchroniza	tion control function	
	0~4	5°C	
	-20°C	~65°C	
perating	and storage temperatur	e: 20 to 85% RH (Non-co	ndensing)
	Altitude 1,000 M or l	ower above sea level	
5 G, Fre	quency 10 to 500 Hz, (No	continuous use under re	esonance frequency)
	IP	20	

E1 Dirive and Accessories-ABS

Part name	Model	Connector	Description
1 Drive	E1 Series	-	
2 Motor Power Cable	HVPS04AB□□MB	CN2	O Motor end Servo drive end CN2 O C D Label
3 Encoder Cable	HVE23IAB□□MB	CN7	
4 USB Communication Cable	051700800366	CN3	USB A type Mini USB
	HE00EJ6DA300 (Standard 50 pins)		Connect servo drive (standard) to controller via CN6 to receive or send pulse command, voltage command, I/O signal, analog monitoring output signal, encoder output signal, etc. The cable (3m) is with open ends.
5 Control Signal Cable	HE00EJ6DC300 (Fieldbus 36 pins)	- UN6	Send or receive I/O signal, analog monitoring output signal, encoder output signal, etc. via CN6 on Fieldbus servo drive. The cable (3 m) is with open ends.
6 EMC Assessor	051800200044 Filter (Single-phase power supply)	-	Single-phase filter FN2090-10-06, for 400 W ~ 1 kW models (rated current: 10 A, leakage current: 0.67 mA)
6 EMC ACCESSORY	051800200071 Filter (Three-phase power supply)	-	Three-phase filter FN3025HL-20-71, for 400 W ~ 4 kW model (rated current: 20 A, leakage current: 0.4 mA)

	03	05	07	10
Cable Length(m)	3	5	7	10

E1 Dirive and Accessories-INC

Pa	art name	Model	Connecto	
1	Drive	E1 Series	-	
2	Motor Power Cable	LMACS-00FE	CN2	
3	Excellent Smart Cube	ESC-SS-S01	-	
4	ESC Encoder Extension Cable	HE00EJWDA 00	-	
5	ESC Encoder Communication Cable	HE00EJUDA 00	CN7	
6	USB Communication Cable	051700800366	CN3	
7	Control Signal Cable	HE00EJ6DA300 (Standard 50 pins)	CN4	
7	Control Signal Cable	HE00EJ6DC300 (Fieldbus 36 pins)	UN6	
8 6	EMC Accessory	051800200044 Filter (Single-phase power supply)		
	Lino Accessory	051800200071 Filter (Three-phase power supply)	-	

	03	05	07	10
Cable Length(m)	3	5	7	10

Description								
Excellent Smart Cube (ESC) converts signals, such as encoder signal, signal of thermal sensor, Hall signal, etc. from the motor side into serial communication format for E1 series servo drive. For model explanation of Excellent Smart Cube (ESC), please refer to table below.								
ESC to HIWIN direct drive motor system (analog encoder)Internal dig thermal signal supported	with incr gital Hall	emental fe signal and	edback					
For connecting ESC to CN7 on the	servo driv	е						
USB A type (2m)		Mini USB]					
Connect servo drive (standard) to co or send pulse command, voltage co monitoring output signal, encoder c (3 m) is with open ends.	ontroller v mmand, I output sig	via CN6 to /O signal, nal, etc. Th	receive analog ne cable					
Send or receive I/O signal, analog n encoder output signal, etc. via CN6 The cable (3 m) is with open ends.	nonitoring on Fieldb	j output sig us servo d	gnal, rive.					
Single-phase filter FN2090-10-06, for 400 W ~ 1 kW models (rated current: 10 A, leakage current: 0.67 mA)								
Three-phase filter FN3025HL-20-7 ⁻ (rated current: 20 A, leakage currer	1, for 400 nt: 0.4 mA	W ~ 4 kW r)	model					
3	5	7	А					

Cable Length(m) 3

10

5

7

D1 Drive

- 100-240 VAC power input
- Supports STP/DIR, CW/CCW, A/B pulse formats (differential/single-ended interface)
- Supports ±10V voltage or digital commands for velocity or force / torque modes
- O Built-in function of error compensation, vibration suppression

4

Optimization Tool

D1 provides powerful and easy-to-use optimization tools. A user can use the closed-loop frequency response function and a real-time response graph will be displayed on the PC. The best gain values of the system can be set easily ccording to the response graph.

When using an analog encoder, a user is allowed to set the resolution to very small units. D1 is able to realize precise control based on units smaller than a nanometer.

Error Mapping

D1 drive supports error mapping to encoder feedback and compensation table building, which contains up to 16,000 points. With this function, the positioning accuracy of the system can be optimized in any control mode.

Standard __<u>₩</u>_

<u>⊾</u>_____

4

D1 Model Description

4: Resolver

D1 Wiring Diagram

Display Panel Two lines Dot Matrix Indicates messeges and parame

Ready/Error quick guide

Connection to PC

host controller 26 pin SCSI connector (Standard accessory)

Connection to Encoder

D1 Basic Specifications

D1				D1-36	
		Volta	ge	100-240 Vac ±10%	
	Frequency			47 to 63 Hz	
Input Power	Phase			1 Ø or 3 Ø	
		Control V	oltage	+24 Vdc ±10%	
		Control C	urrent	1A minimum	
		Continuous	Current	12 A_amp [8.5 A_rms] (Note: with external heat sink)	
Output Power		Instantaneou	s Current	36 A_amp [25.4 A_rms]	
	Allo	wable Contin Instantaneou	uous Time for s Current	1 second maximum	
	Servo Drive	e Startup Tim	e	1~2 seconds	
	Servo Driv	ve Reset Time	2	3~4 seconds	
	Main Cir	cuit Control		IGBT PWM space vector control	
Control Motor Type				 13 bit AC servo motor Torque motor 	
Status LED Inc	dicator	Servo	Drive Status	Red: Error ; Green: Servo ready	
		Input Pin		[I9, I9M], [I10, I10M] differential inputs or I9, I10 single-ended inputs	
		Pulse (Command Type	Pulse/Direction • CW/CCW • AqB	
	Position Mode	tion de The Maximum Input Pulse Frequency	Differential Signal	Pulse input (2 M pulses/s max.); Quad A/B (8 M counts/s max.)	
			Singleended Signal	Pulse input (500 K pulses/s max.); Quad A/B (2 M counts/s max.)	
		Command	Source	Pulse from controller	
	Electronic Gear			Electronic gear ratio: pulses/counts Pulses: 1~2147483647; Counts: 1~2147483647	
Control Mode			Input Impedance	10 ΚΩ	
		Analog	Voltage Range	±10 Vdc	
		Command	Time Constant	2.2 us	
			Resolution	12 bits	
	Velocity Mode		PWM 100%	I9: PWM = 0% - 100% ; I10: Direction = 1/0	
		Digital	PWM 50%	I9: PWM = 50% ± 50% ; I10: No function	
		Command	Frequency Range	36.5 KHz minimum, 100 KHz maximum	
			Pulse Width Limit	220 ns minimum	
		Command Source		Voltage or PWM from controller	

Programmable I/O Interface

Digital Input

D1-36
The specification is the same as the one in velocity mode
The specification is the same as the one in velocity mode
Voltage or PWM from controller
+5 Vdc ± 5% @400 mA
A, /A, B, /B, Z, /Z, RS422 differential signal
5 MHz line frequency, x 4 frequency: 20 M counts/s
1 Vpp (sin/cos), differential signal
1 MHz maximum line (cycle) frequency
Maximum 65528 counts/cycle
Sin/Cos, differential signal Reference 3 KHz, 6 Vpp, 100 mA
-2147483648~2147483647 (32 bits) The motor commutation is normal and is not affected by encoder counting range.
 Without being processed by the servo drive, A/B phase signals are directly sent to the controller. (Maximum 18 M counts/s, digital AqB output, differential signal output) Without being processed by the servo drive, Z phase signals are directly sent to the controller. (Differential signal) The delay time between the time the servo drive receives encoder signal from the encoder and the time the servo drive outputs signal from output pin is less than 100 nanosecond (ns).
 Maximum 18 M counts/s, digital AqB output, differential signal output The resolution is the grating period of analog encoder/4. (If grating period = 40 μm, the resolution of buffered encoder output = 10 μm/count) The delay time between the time the servo drive receives encoder signal from the encoder and the time the servo drive outputs signal from output pin is less than 100 nanosecond (ns).
 Maximum 18 M counts/s, digital AqB output, differential signal output The ratio of encoder input to emulated encoder output can be adjusted. The width of emulated index signal output can be adjusted. Linear motor: (1)Outputs one index (Z phase) signal per travel distance Rotary motor: (1)Outputs one index (Z phase) signal per travel distance (2)Outputs one index (Z phase) signal per motor revolution The maximum delay time between the time the servo drive receives encoder signal from the encoder and the time the servo drive outputs signal from output pin is 66.67 us.
Digital single-ended signal with 120 degrees phase difference HA, HB, HC
Connect to PC via RS232
 Full-duplex Baud rate: 9,600 ~ 115,200 bps Binary
74HC14 Schmitt trigger input. Inputs [I1~I6] [I11, I12] [I9, I10]10 digital inputs are provided. Note: When I9 and I10 are set for digital inputs, they cannot

be programmed as general inputs.

)1	D1-36		
Output	0.3 Adc max, +40 Vdc max (Open drain) [01~03]		
Output	Brake [04], 1 Adc max.		
The Maximum Storage for Codes	32K Bytes		
Storage for Variables	800 Bytes		
Supported Variable Type	Float: 32 bits ; Integer: 16 bits and 32 bits (Array and pointer are supported.)		
Execution Cycle	66.67 us		
Multitasking	Four tasks can be run at the same time.		
Control Commands for Program Flow	Supports commands such as "if", "else", "while loop", "for loop", "goto", "till", etc.		
Operator	Includes arithmetic operators, logic operators and comparison operators.		
Task Synchronization	Supports Lock and Unlock commands to perform task synchronization.		
Length Limit for User-defined Name	Variable: 17 characters Label: 24 characters Proc: 24 characters		
Resistor	External connection		
Voltage Threshold for Activation	+HV > 390 Vdc		
Voltage Threshold for Deactivation	+HV < 380 Vdc		
Hysteresis	10 V ± 0.5 Vdc		
DC Link Capacity	1880 uF		
n Function	Short circuit, Overvoltage (> 400 Vdc ± 5%), Position error too big, Encoder error, Motor cable lost connection, Drive over temperature (IGBT > 80 oC± 3 oC), Motor over temperature, Undervoltage (< 60 Vdc), I2T current limit protection		
Applicable Motor	Linear motor		
Compensation Method	Creates error map table to compensate encoder error by means of linear interpolation.		
Storage Point	Maximum 5,000 points		
Storage Location	Flash ROM, disk file		
Unit	μm, count		
Enabling Method	Enabled after internal homing completes.Enabled by external input signal.		
on Range for Vibration n Filter (VSF)	0.1 Hz~200 Hz		
Operating Temperature	0~50 $^\circ\mathrm{C}$ (If temperature is above 55 oC, forced ventilation will be required.)		
Storage Temperature	-20 °C ~65 °C		
Humidity	0 to 90%RH (No condensation)		
Altitude	Altitude 1000 M or lower		
Vibration	1G (10 to 500 Hz)		
IP Rating	IP20		
	P1OutputOutputThe Maximum Storage for CodesStorage for VariablesSupported Variable TypeSupported Variable TypeMultiaskingControl Commands for Program FlowOperatorOperatorLength Limit for User-defined NameVoltage Threshold for ActivationVoltage Threshold for DeactivationVoltage Threshold for DeactivationDC Link CapacityApplicable MotorStorage Point Storage LocationStorage LocationMittudeUnitEnabling MethodStorage TemperatureStorage TemperatureVibrationHumidityAltitudeVibrationIP Rating		

D1 Cooling Weight Dimensions Case

D1-36

Natural cooling or external heat sinks

1,250 g (min.)

191.6 mm X 139.8 mm X 64.8 mm

Complies with CE U.L. Spec 94 V-0 Flammability Rating

D1 Drive and Accessories

	Part Name	Model	Connector	Description
1	Drive	D1-36-S2		For Incremental feedback types
2	Motor Power Cable	LMACS - F	Motor Connects (U,V,W)	For Direct Drive motors
3	Position Signal Cable	LMACE AM	CN3	For incremental feedback types with hall sensor
4	RS-232 Cable	LMACR21D		To PC (about 2m long for mega-fabs drive) D-SUB 9 Female Drive RS-232 RJ-11
5	Controller Pulse Cable	LMACK30R	CN2	To motion controller (about 3m long)
6	Regen Resistor	050100700001		Rated 100W, Peak 500W
7		D1-CK1		All Connector (Not Include CN3)
	DT Drive Accessory	D1-CK2		All Connector (Include CN3)
Q		D1-EMC1		Used in Single Phase AC Power
0	LING ACCESSORY	D1-EMC2		Used in Three Phase AC Power
9	Heat Sink	D1-H1		Standard
7 пеа		D1-H2		Low Profile

	03	04	05	06	07	08	09	10
Cable Length (m)	3	4	5	6	7	8	9	10

Note: User must prepare one 24 $V_{\mbox{\tiny DC}}$ power supply for each drive.

Pin Assignment

Function	8-10-0090 (Female)	Signal	Color (051400300069)	SCSI 20 (Male)
	4	5V	Blue	3
Power	5	5V	Blue	-
	6	OV	White	2
	2	U2 ⁻	Red	19
Incremental	3	U1 ⁻	Brown	17
Signal	9	U2*	Black	18
	10	U1 ⁺	Green	16
	1	Uo-	Pink	9
Reference Mark	8	Uº+	Grey	8
	Case	Shield	Outer Shield	1
Torresture Switch	11	T+	Purple	14
remperature Switch	12	T-	Yellow	15
	13	Vcc	Blue	3
	14	Hall A	Brown/Green	11
Hall Sensor	15	Hall B	White/Yellow	12
	16	Hall C	White/Green	13
	17	GND	White	10

Appendix

Appendix A : Motor Sizing

Start Motor Sizing

The following contents describe how to choose a proper motor according to speed, moving distance, and loading inertia. The basic process for sizing a motor is:

Requirements

- Operating environment
- Installation (horizontal or vertical)
- Driving method
- Load conditions (loading inertia, friction and cutting force)
- Speed condition (maximum acceleration and velocity)
- Duty cycle

Torque Calculation

- Calculate the torque corresponding to the speed under each operation condition
- Calculate equivalent torque

Motor Sizing and T-N Curve Confirmation

- Select the appropriate motor from the HIWIN's catalogue in accordance with calculated maximum torque, equivalent Symbol: torque and speed.
- Ensure the speed and the corresponding torque under all operating conditions are within the range of torque-speed curve of the motor.
- Confirm the equivalent torque is within the continuous torque of the motor.

- θ : Angular displacement (rad)
- t: Moving time(sec)
- α : Angular acceleration(rad/s²)
- ω : Angular velocity (rad/s)
- J: Load inertia(kgm²)
- Jm: Rotor inertia (kgm²)
- T_p: Peak torque (Nm)
- T_c: Continuous torque (Nm)
- Ti: Inertia torque(Nm)
- Kt: Torque constant(Nm/Arms)
- Ip: Peak current(Arms)
- Ie: Equivalent current (Arms)
- Ic: Continuous current(Arms)
- ω 0: Initial angular velocity(rad/s)
- m:Loading Mass(kg)
- R:External diameter of loading Mass(m)
- r: Internal diameter of loading Mass(m)
- a、b: Side length of loading Mass(m)
- S:Distance from gravity center to rotary center(m)

STEP1 Requirements

In order to select the motor that meet user's needs, the following formula of load inertia motion must be understood prior to the selection.

Calculation of loading inertia

Loading inertia can be determined by 3D drawing software or according to the formula. The basic loading formula is as follows: Moment of inertia of a hollow cylinder

$$J = m \left(\frac{R^2 + r^2}{2} + S^2 \right)$$

Moment of inertia of a rectangular

$$J = m \left[\frac{a^2 + b^2}{12} + S^2 \right]$$

Determine the motion speed and parameters

Basic kinematics equations are described as follows:

$$\omega = \omega_0 + \alpha t$$
$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

Where ω is angular velocity, α is angular acceleration, t is moving time and θ is angular displacement. Choose two of the four parameters (ω , α , t and θ) as user's designed parameters, then the left two parameters can be calculated by above equations.

Motion Velocity Profile

The motion profiles for direct drive motors are usually classified as "Trapezoid Profile" and "Triangle Profile", where the Trapezoid Profile is frequently used for scanning. The motion profiles are divided as acceleration, constant velocity and deceleration. The maximum angular acceleration can be determined by the basic kinematics equations above-mentioned; the Trapezoid Profile is usually used in point-to-point application. The motion profiles are divided as acceleration and deceleration, where the motion profile and formula can be simplified as follows:

$$\omega_{\max} = 2 \times \frac{\theta}{t}$$
 or $\omega_{\max} = \sqrt{\alpha \times \theta}$
 $\alpha_{\max} = \frac{4\theta}{t^2}$

STEP 2 Torque Calculation

The maximum torgue can be calculated by the following equation

$$T_{max} = (J + J_m) \times \alpha_{max} + T_f = T_i + T_f$$

Where Ti is inertia torgue, Tf is the torgue which is caused by friction, cutting force or external force. In most cases, the motions are cyclic point-to-point movements. Assuming a cyclic motion shown in the following profile with a dwell time of t4 second, the effective force can be calculated as follows:

STEP 3 Motor Sizing and T-N curve Confirmation

With the help of HIWIN's motor specification, users can select the appropriate motor from peak torque and equivalent torque, and ensure the speed and torque under all operating conditions are within the range of the T-N curve for the motor.

The motor sizing is determined as follows:

Tmax <Tp

Te < Tc

The user needs to consider the ratio of equivalent torque and continuous torque. Usually the ratio (Te/Tc)is recommended within 0.7.

The peak current (Imax) and effective current (Ie) can be calculated by bringing motor torque constant into the following equation (For Kt, please refer to Appendix B)

$$I_{max} = \frac{T_{max}}{K_t}$$
 $I_e = \frac{T_e}{K_t}$

Example of motor sizing

Loading requirement: An aluminum disc with ϕ 500mm and 15mm thick without offset and weight is 12kg. There are eight jigs with 100x50x50mm on the aluminum disc at an interval of 45°. Each jig weighs 1 kg. The distance from the jig gravity center to the rotary center is 150mm, and the mechanical friction force is 2Nm. Speed requirement: Each position 45° is completed in 0.3 seconds, and rests for 1 second.

STEP1 Requirement Confirmation

Calculation of loading inertia Inertia of disc

$$J_1 = m\left(\frac{R^2 + r^2}{2} + S^2\right) = 12\left(\frac{0.25^2 + 0^2}{2} + 0^2\right)$$

Inertia of jig

$$J_2 = m\left(\frac{a^2 + b^2}{12} + S^2\right) = 1\left(\frac{0.1^2 + 0.05^2}{12} + 0\right)$$

Total inertia

$$J = J_1 + 8 \times J_2 = 0.375 + 8 \times 0.0235 = 0.563$$

Motion profile

It is a point-to-point application. The maximum angular velocity and the maximum angular acceleration are calculated as follows:

$$\theta = 45^{\circ} = \frac{45 \times n}{180} = 0.7854 \text{ rad}$$

 $\omega_{\text{max}} = 2 \times \frac{\theta}{t} = 2 \times \frac{0.7854}{0.3} = 5.236 \text{ rad/s} = 3.236 \text{ rad/s} = 3.23$

$$\alpha_{\text{max}} = \frac{4\theta}{t^2} = \frac{4 \times 0.7854}{0.3^2} = 34.91 \text{ rad/s}^2$$

STEP 2 Torque Calculation

It is recommended that the ratio loading inertia (J) over motor rotator inertia (Jm) be less than 150¹¹. It can be roughly estimated 30 in motor sizing. Since J/30=0.563/30=0.019kgm², user can select the DMS34 (Jm=0.02 kgm²)

 $T_{max} = (J+J_m) \times \alpha_{max} + T_f = T_i + T_f = (0.563 + 0.02) \times 34.91 + 2 = 20.4 + 2 = 22.1 N_m$ Where Ti=20.4Nm. Tf=2Nm

$$T_{e} = \sqrt{\frac{\left[T_{i} + T_{f}\right]^{2} \times t_{1} + T_{f}^{2} \times t_{2} + \left[T_{i} - T_{f}\right]^{2} \times t_{3}}{t_{1} + t_{2} + t_{3} + t_{4}}} = \sqrt{\frac{\left[20.4 + 2\right]^{2} \times 0.15 + 2^{2} \times 0 + \left[20.4 - 2\right]^{2} \times 0.15}{0.15 + 0 + 0.15 + 1}} = 9.9 \text{Nm}$$

Note:

* D1 series drives are recommended the inertia ratio less than 100, if over than 50, we recommended the motor with hall sensor. * E1 series drives are recommended the inertia ration less than 150.

STEP 3 Motor Sizing and T-N curve Confirmation

Finally, DMS34 can be selected according to the Tmax and Te. The peak torque Tp=60Nm, the continuous torque Tc=20Nm, the torque constant Kt=6.6 Nm/Arms, and the speed/torque, Te, under all operating conditions are within the range of T-N curve for DMS34.

 2) = 0.375 kgm²

 $(15^2) = 0.0235 \, \text{kgm}^2$

kgm²

50rpm

Appendix B : Glossary

1. Back EMF constant (Line to Line): $K_V\left(\frac{V_{rms}}{rad/s}\right)$

The back EMF constant, Kv, is the ratio of the back emf voltage (Vrms) to the motor rotational speed(rad/s) when the magnet is at 25°C. It is created at the movement of the coil in the magnetic field of permanent magnets.

2. Continuous current: Ic (Arms)

The continuous current, Ic, is the current that can be continuously supplied to the motor coils at the ambient temperature 25°C, and the final temperature of coil can't exceed 100°C. Under this condition, the motor reaches the rating continuous torque Tc; in relation with the continuous current and coil temperature.

3. Continuous torque: Tc (Nm)

The continuous torque, T_c, is the maximum torque the motor is able to generate continuously at the ambient temperature 25° C and the final temperature of coil can't exceed 100° C. This continuous torque corresponds to Ic supplied to the motor; in relation with the continuous current and coil temperature.

4. Inductance (line-to-line): L (mH)

Inductance is measured between lines when the motor operates in continuous current $I_{\text{c}}/I_{\text{cw}}.$

5. Resistance at 25°C (line-to-line): $R_{25}(\Omega)$

Resistance is measured between lines when the motor operates at the coil temperature 25°C.

6. Motor constant: $K_m \left(\frac{Nm}{\sqrt{W}}\right)$

The motor constant, K_m, is defined as the ratio of the square root of motor output torque to consumption power when the coils and magnets are at 25°C. The larger motor constant represents the lower power loss when the motor outputs at the specific torque.

7. Number of poles: 2p

2p represents the number of poles of the rotor, where p is the number of pole pairs.

8. Peak current: Ip (Arms)

The peak current, Ip, is the current corresponding to maximum torque output of the motor, and the motor temperature reached by the current that will not demagnetize the magnet. Generally speaking, peak current can be granted to supply 1 second when the motor is operating in the normal condition, and then needs to ensure it reaches the normal temperature to supply peak current.

9. Peak torque: Tp (Nm)

The peak torque,Tp, is the maximum torque that the motor can output for less than 1 second. Peak current corresponding to the torque that will not demagnetize the magnet.

10. Rotor inertia: J (kgm²)

The rotor inertia, J, is the rotary component resistance any change in its state of motion, including changes to its speed and direction. It is related with the shape and mass.

11. Thermal resistance: Rth/Rthw (K/W)

The thermal resistance, Rth, is defined as the resistance heat suffered from motor coil by the heat dissipated into the environment. (Consider the natural convection and radiation for air cooling when ambient air is at 25°C, and the water cooling for water cooling when the water is at 25°C); Higher thermal resistance represents the larger temperature difference between the coil and environment under the same heat source.

12. Torque constant: Kt (Nm/Arms)

The torque constant, Kt, is the ratio between as the motor's output torque per RMS current.

13. Maximum speed (RPM)

Maximum speed is defined as maximum speed provided under specific torque (usually continuous torque); if there is a bearing installed inside the motor, the maximum speed will be limited by the bearing's DN value. There are three conditions to define the maximum speed of a water-cooled motor: maximum speed under air-cooling continuous torque, maximum speed under water-cooling continuous torque and maximum speed under peak torque.

14. Rated speed: ωn(RPM)

The rated speed is defined as the speed at which when the motor is running continuously without a break and, the rotor does not suffer from excessive rotor temperature (>80 °C) due to iron loss, if the speed is exceeded, the duty cycle must be reduced or an additional rotor heat dissipation design must be done.Please refer to 17. T-N curve for details regarding motor operation range.

15. T-N Curve

The T-N curve is defined as the comparison chart of the torque and the speed that can be output under a certain input voltage of the motor. Considering the temperature rise of the motor, the figure can be divided into four operating ranges as shown below:

 \bigcirc When the motor is air-cooled and the torque is less than T_c, it can run continuously below ω n without break.

(1+2) When the motor is water-cooled and the torque is less than T_{CW} , it can run continuously below ω_n without break.

(3) When the motor is air-cooled and the torque is less than T_c or when it is water-cooled and the torque is less than T_{cw} , the speed is greater than ω_n , the duty cycle must be reduced or additional design on rotor heat dissipation must be provided to avoid overheating of the rotor.

4 When the motor is air-cooled and the torque is greater than T_c or when it is water-cooled and the torque is greater than T_{CW} , the duty cycle must be reduced. When T_D is reached, only 1 second output is allowed to avoid overheating of the stator.

16. Maximum DC bus voltage

Maximum DC bus voltage is the maximum voltage for the motor operating in the normal environment.

17. Resolution: p/rev

Resolution is the quantity of the motor feedback points during one rotation.

18. Accuracy: arc-sec

Accuracy is the error between the target position and the actual position; in the HIWIN's definition, the motor is measured clockwise and counterclockwise twice per 22.5° to take the maximum error.

19. (Bi-) Repeatability: arc-sec

(Bi-)Repeatability is the repetition when the motor moves to the same angle.

20. Axial runout and radial runout:

Axial runout is the runout Ra by measuring the parallel direction between the installation end and rotary axis when the motor rotates; radial runout is defined as runout Rr by measuring the vertical direction between the installation end and the rotary axis when the motor rotates. Due to different types of motor, refer to the figure below for the measurement criteria.

21. Loading capacity:

The load of motor must be considered when it is operating. The load can be calculated by external force and the installation to identify the motor structure tolerates or not. The axial force applied to the motor in the calculation needs be less than the maximum axial load F_i < F_a, and can be used when the applied torque needs to be less than the maximum torque load $M_i < M$.

(A) External force=F

Axial force applied to the motor F₁=F+loading weight W Torque applied to the motor M₁=0

(B) External force=F

Axial force applied to the motor $F_2=F+loading$ weight W Torque applied to the motor $M_2 = FxL$

(C) External force=F

Axial force applied to the motor F₃=F+loading weight W Torque applied to the motor $M_3 = Fx(L+0.03m) + Wx(L2+0.03m)$

Appendix C : Environment

Operating Temperature	Temperature	+5 to +40°C	
Operating remperature	Humidity	20 to 85% RH (no condensation)	
Ctorogo Tomporaturo	Temperature	-10 to +50°C	
Storage remperature	Humidity	20 to 85% RH (no condensation)	
Atmosphere	Under 1000m, no	corrosive gas, liquid and powder	

Appendix D : Motor Inquiry Form

Company Name:	Email:		Tel:	
Industrial:		Project Nam	ie:	
Environmont	□Normal environment(25°C)		□Clean room,Class:	
Environment	□Polluted environment		□Other:	
Installation	Horizontal	Upside Do	wn 🗆 Late	arally
Load Type				9 1
	Total moment of inertia:	kgm² , Size	e:mm	
	Separate document Attach	ed 🗌 Not atta	ached	
	□Balanced load (Number:	,Mass:	or Material:	,Size:)
Load Conditions	□Unbalanced load (Number:,Mass:	_or Material:_	,Size:,Off	fset of C.G.:mm)
Farra	None Y	es:kg,Off	set of C.G.:mm	
10100	□At all times □W	/hen stopped]When rotating
Application	Moving Angle A A Moving Time A Dwell Time A	Moving Angle B A Moving Time B	B Dwell TimeB Dwell TimeB	at to Point □Scan g Angle A:° g Time A:sec Time A:sec g Angle B:° g Time B:sec Time B:sec
Required Accuracy	Repeatability:±()arcsec * Accuracy:±()arcsec * *optional	Repeatability Accuracy:±(:±()μm,Offset of ()μm,Offset of C.G.	C.G. ()mm ()mm
Table Surface Rotation Accuracy	□Standard □Customized (Axial run out_	μm、	Radial run out	_µm)
Clamp	□None □Power Off Clamp [Power On C	lamp	
Other Requirements				

Appendix E : FAQ

1. The difference between inner rotation type and outer rotation type direct drive motors

If we compare an inner rotation type and an outer rotation type direct drive motors of the same size, the outer rotation type one has larger torque. This is because its mechanical structure has a moment arm of a great distance. The inertia of the outer rotation type rotators is naturally bigger than that of the inner rotation type rotators. Therefore, when the outer rotation type motors work with loads, the inertia of the load is smaller, which makes control easier.

2. The comparison between mechanical transmission and direct drive motors

Mechanical transmission refers to motion performed by reducers, belts, worm gears and ball screws. Comparisons are listed in below table:

	Mechanical Transmission	Direct Drive Motors	
Structure	Complicated	Simple	
Size	Bigger	Smaller	
Accuracy	Low	(Very) High	Resulted from backlash
Noise	Loud	Quiet	
Duration	Short	Long	
Control and Drive	Simple	Complicated	
Maximum Speed	Low	High	Resulted from speed reduction ratio

3. Axial runout and radial runout

Radial runout is more influential to direct drive motor applications. When the workpiece is put on the motor, the radial runout shows the up and down swing of the rotating workpiece, which may have negative effect on the machining and processing.

4. The effect of motor inertia

The inertia of a servo motor is usually less than 15 or 10 times. This principle does not apply to direct drive motors in automation tasks. The best principle of the load inertia of a direct drive motor is less than 80 times.

5. The meaning of continuous torque and peak torque to the motor

Continuous torque is the torque powered by continuous current. Peak torque is the torque powered by peak current. Peak current cannot be input continuously. It can be input for only a few seconds or less; otherwise, the motor will be damaged.

Practically, peak torque is used during acceleration or deceleration. We can imagine a sprinter's energy output maximizes during acceleration or deceleration; However, the the sprinter cannot run a long distance without rest. Continuous torque is used to compare with equivalent torque, which is calculated from actual motion. If equivalent torque is less than continuous torque, the design should work well. If equivalent torque is greater than continuous torque, the motor will over-heat.

6. Position clamp and safety clamp

Position clamp: To clamp when the motor is in position. Reduce the resistance of the motor to outer Safety clamp: To prevent the equipment from collision or moving caused by powering off.

Direct Drive Motor Technical Information

Publication Date: February 2022, first edition

^{1.} HIWIN is the registered trademark of HIWIN Group. For your protection, avoid buying counterfeit products from unknown sources.

^{2.} Actual products may differ from specifications and photos provided in this catalog. These differences may be the result of various factors including product improvements.

^{3.} HIWIN will not sell or export products or processes restricted under the "Foreign Trade Act" or related regulations. Export of restricted products should be approved by proper authorities in accordance with relevant laws and shall not be used to manufacture or develop nuclear, biochemical, missiles or other weapons.

HIWIN. MIKROSYSTEM

Global Sales And Customer Service Site

HIWIN GmbH OFFENBURG, GERMANY www.hiwin.de www.hiwin.eu info@hiwin.de

HIWIN JAPAN KOBE • TOKYO • NAGOYA • NAGANO • TOHOKU • SHIZUOKA • HOKURIKU • HIROSHIMA • FUKUOKA • KUMAMOTO, JAPAN www.hiwin.co.jp info@hiwin.co.jp

HIWIN USA CHICAGO, U.S.A. www.hiwin.us info@hiwin.com

HIWIN Srl BRUGHERIO, ITALY www.hiwin.it info@hiwin.it HIWIN Schweiz GmbH JONA, SWITZERLAND www.hiwin.ch info@hiwin.ch

HIWIN s.r.o. BRNO, CZECH REPUBLIC www.hiwin.cz info@hiwin.cz

HIWIN FRANCE STRASBOURG, FRANCE www.hiwin.fr info@hiwin.de

HIWIN SINGAPORE SINGAPORE www.hiwin.sg info@hiwin.sg HIWIN KOREA SUWON • CHANGWON, KOREA www.hiwin.kr info@hiwin.kr

HIWIN CHINA SUZHOU, CHINA www.hiwin.cn info@hiwin.cn

Mega-Fabs Motion Systems, Ltd. HAIFA, ISRAEL www.mega-fabs.com info@mega-fabs.com

HIWIN MIKROSYSTEM CORP. No.6, Jingke Central Rd.,

No.6, Jingke Central Rd., Taichung Precision Machinery Park, Taichung 40852, Taiwan Tel: +886-4-23550110 Fax: +886-4-23550123 www.hiwinmikro.tw business@hiwinmikro.tw

The specifications in this catalog are subject to change without notification.